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by Joseph Woelfel, State University of New York at Buffalo 

Recent advances 'in neuroscience, computer sCience, psychol­
ogy, and other fields have led to the development of computer 
programs that are modeled, in principle, on idealizations of 
organic neural structures. These anificial neural networks 
(ANNs) exhibit imponant propenies that promise great use­
fulnessfor policy researchers. Most imponant among these 
are ANNs' ability to learn to identify complex patterns of in­
formation and to associate them with other patterns. Funher­
more, like their biological predecessors, ANNs can recognize 
and recal/these patterns and associations in spite of noisy, 
incomplete, or otherwise defective information inputs. ANNs 
can also generaUze information iearned about one or more 
patterns to other related patterns. As a result, ANNs bave al­
ready found extensive use in areas once reservedfor multi­
variate statistical programs such as regression and multiple 
classification analYSiS, and are developing an extensive com­
munity of advocatesfor processing text and other qualitative 
information. 

While modern research has emphaSized the extraordinary complexity of 
organic neural structures and processes, it has, at the same time, given 
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Figure I. Set ot nodes representing a picture of a cat (0 represents an active node). 

rise to the belief that certain common and reasonably simple mathemati­
cal forms may underlie this complexity. This, in turn, has led to the vety 
rapid development of mathematical models of elementary neural process­
es, as well as to computerized implementations of these mathematical 
models. These artificial neural networks (ANNs), even at their present el­
ementary level of development, have already shown great utility in ap­
plied areas. 

ANNs are mathematical models in two senses. First, they represent ide­
alized models of biological neural systems, and are often used as tools to 

help better understand the functioning of biological systems. But more 
frequently, ANNs are used to model other processes, and it is these other 
kinds of uses that provide the basis for ANNs as an applied technology. 

In their Simplest form, these mathematical models consist of artificial 
neurons or nodes, which are connected to each other by communication 
channels of varying strength. Multiple inputs to any node are summed in a 
transfer function; this sum is then entered into the node's activation 
junction, which determines whether the node will become active, and, in 
the case of continuously variable nodes, how active it will become. Sets of 
such nodes represent patterns in the same way as the activation of subsets 
of pixels on a video screen represent patterns on the screen. Changing 
patterns of activation represent changing images represented by such a 
system. Any arbitrary pattern may be represented. Figure 1 shows a set of 
nodes representing a crude pictorial image of a cat, while Figure 2 shows 
a similar set of nodes representing the word CAT by picturing the se­
quence of the three capital letters C. A, and T In these figures, an asterisk 
represents an activated node, while a dot represents an inactive node. 

In a video screen, the activation of each pixel is independent of the ac­
tivation of each of the others. But because the nodes of a neural network 
are connected to each other by pathways with different conductivities, 
the activation value of the active node(s) is in !Urn conducted or commu-
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Figure 2. Set ot node. repre.entlng the.le"e .. C, A, and T (. repr ... nll an actlv. 
node). 

nicated along the connections as a function of the strength of these con­
nections. It is this process of communicating activation levels throughout 
a network of nodes that gives a neural network its information-processing 
capabilities-which include the ability to represent, store, retrieve, and 
associate patterns of arbitrary complexity, and to generalize information 
learned about a given pattern to other related patterns. For example: 

e. If the set of nodes that represents a given pattern is more strongly 
linked to each other than to other nodes, then the activation of some of 
the nodes in the pattern is likely to activate the remaining nodes in the 
pattern. Thus the network can serve as a pattern storage and recognition 
device . 

• If the set of nodes that represents one pattern is linked to the nodes 
that represent another pattern, activation of a sufficient subset of the 
nodes in the first pattern can serve to activate the' nodes that represent the 
succeeding pattern. Thus the network can serve as a pattern association 
device. 

For Figures 1 and 2, a neural network can in general find connection 
weights among the nodes, such that the activation of a large enough sub­
set of nodes in the picture of the cat will activate the rest of the nodes in 
the figure. (The same is true, of course, for the word CATin Figure 2.) 
Moreover, it is also possible in general to find weights between the two 
sets of nodes such that the activation of a large enough subset of the 
nodes in the picture will activate not only the remaining nodes in the piC­
ture, but also the nodes representing the word CAT. (The reverse, of 
course, is also possible.) 

Perhaps more important than the abiliry to link patterns (which, after 
all, can be linked in an ordinary serial computer program) is the robust 
character of the link. Since the decision of each tiode as to whether to fire 
is governed by a weighted sum of many inputs and, typically by some 
thresholding function, the proper association can be made even if part of 
the input is left out, or if part of the input is erroneous. Neural networks, 
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both real and artificial. are highly tolerant of input noise: thus. they are 
particularly good at problems that serial computer programs do not h 
die well. They deal effectively with poor or degraded data. and recog 'n­
patterns in a holistic way. nlZe 

:-Ieu,,1 networks have an additional striking property: They are able 
generalize new information gained about any arbitrary pattern to othe to . r 
related patterns. Since the nodes that represent one pattern are also likel 
to be a part of the set of nodes that represents a similar pattern (e.g.. Y 
many of the neurons or nodes that represent the concept "cat" are also 
likely to be part of the set of nodes that represent the concept "leopard"). 
information learned about one pattern is automatically generalized to re­
lated patterns. Any new connections formed with neurons that form pan 
of the concept "cat" must involve neurons in "leopard: since they are. at \._ 
least to some extent. the same neurons. If the network depicted in Figures 
I and 2 were to learn to associate "hunts" with "cat." it would also associ-
ate "hunts" with "leopard" (see Armstrong & Bauman, 1993). 

The significance of these facts for policy research lies in the fact that 
virtually any pattern may be represented by the network. One pattern, for I 
example, might consist of a set of numerical values that describe the edu- ',' 
cational structure of a community, while another pattern might represent 
the educational and occupational attainments of its residents. One input 
pattern might consist of a set of economic indicators and a set of govern- . 
mental activities, while the output pattern might include other (future) in­
dicators such as revenues, productivity indices, inflation rates, and the 
like. Or one pattern might consist of the demographic characteristics of a 
community combined with the history of governmental actions there, 
while another might consist of the rates of occurrence of various health 
problems. Once an artificial neural network has been trained to relate 
these kinds of patterns, it can make (often excellent) predictions about 
the rates of health problems for a given community based on known pat-
terns of public health practices. 

To be sure, this type of problem can also be approached by traditional 
methods, like econometric modeling, regression, and the like. But due to 
its robust character, the network approach can make these kinds of 
matches even if the input d",ta are incomplete, noisy, or otherwise imper­
fect (see, e.g., Armstrong & Bauman, 1993). Policy-related problems, per­
haps more than others, typically require clear decisions in the face of 
poorly defined problems, with poorly measured variables, incomplete 
and inaccurate data, and incomplete theoretical understanding. While the 

. performance of virtually all traditional multivariate statistical procedures 
deteriorates bacpy under these conditions, neural networks excel under 
precisely these circumstances. The general ability of artificial neural net­
works to learn related patterns of any general type, therefore, forms the 
basis for a powerful and general applied technology for policy research. 
Furthermore. the generalizing property of neural networks provides a 
special ability. For example, if it were to be discovered that a particular 
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drug or food led to increased risk of cancer oueduced chance of heart 
disease or the like, a previously trained neural network would immediate­
ly suspect that related drugs might produce the same effect without any 
further retraining. . 

A network learns to recognize patterns and associate them with other 
patterns by forming and changing the connections among nodes. Al­
though alternative taxonomic models exist, it is most common to classify 
ANNs by the way in which their connection strengths (weights) are modi­
fied . .This leads to three fundamental types of ANNs: (a) supervised mod­
els, (b) unsupervised or self-organizing models, and (c) hybrid models. 
Each of these models has different characteristics and different uses. 

Supervised Models 

Supervised ANNs are by far the most common models available, and form 
the lion's share of the applied market. Supervised ANNs bear a functional 
resemblance to the generalized regression model. Like the regression 
model, supervised ANNs consist of input (independent) variables and 
output (dependent) variables. Also like the regression model, data for su­
pervised ANNs consist of cases, which are sets of values of inputs and 
outpUts, With each set of values making up a case. 

Both supervised ANNs and the regression model then attempt to fit in­
puts to outputs, but in different ways. The regression model attempts to 
find coeffiCients or slopes for each of the terms in a function provided by 
the analyst which minimize the degree of error (actually, the sum of 
squared errors) in predicting the output values· of the cases given their 
input values. The supervised ANN also attemp~ t? predict the values of 
the outputs from the (given) values of inputs for each case, but it does so 
by reconfiguring the pattern of'€onnections between input and output 
nodes in the network itself. Because the transfer functions of the nodes in 
the network are typically nonlinear (generally logistic), and because of 
the multilayer structure of the network. the network is able to fit virtually 
any functional form whatever (Funahashi. 1989; Kurkova', 1992). Most 
important for the policy researcher, however, is the fact that there is no 
need for the analyst to stipulate the functional form prior to the analysis; 
the ANN will find it automatically. This can be of vital advantage to the 
policy researcher, since policy deciSions typically must be made even 
though well-formed theories relevant to the decision do not exist. (Unlike 
the regression model, however, the neural network is unable to represent 
the results as an equation with parameters.) 

Although variations are common, by far the most typical supervised 
ANN consists of three layers of nodes: an input layer, one or more middle 
or hidden layers, and an output layer. Nodes within each layer are gener­
ally not connected to each other, but the nodes in the input layer have 
(initially random) connections with the hidden layer, and the nodes in the 
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hidden layer are (randomly) connected to those in the OUtput layer. (Typ_ 
ically, each node in a layer will be connected to all the nodes in the fol­
lowing layer, although the values of the connections will vary randomly.) 

Data are entered into the network in the form of "cases·' or ·'patterns." 
that are identical in form to the cases found in regression models. Each 

·case or "input pattern" consists of a set of values for a set of input cbar­
acteristics (independent variables) and a set of values for a set of output 
cbaracteristics (dependent variables). Again typically, each input charac­
teristic corresponds to a node in the input layer, and the activation value 
of the input node corresponding to a given input characteristic is set to 
the value of that input characteristic for that case. 

These input activations (which correspond to the values of the input 
characteristics for a single case) are then communicated through the (ran­
dom) connections to the hidden layer. Each node in the hidden layer then 
sums the inputs from all input nodes, as in Equation 1: 

" net, = 'i.ajWij' (1) 
}=1 

where ·aJ represents the activation value of the fth input node, and w'J rep­
resents the weights or connection strengths between the fth input node 
and the rth hidden node. 

A commonly used activation function is the logistic function, sometimes 
referred to as a sigmoid function: 

(2) 

where ap1 is the activation of the fth node for the pth pattern, and netpj is 
the net input to the fth node for the pth pattern from all input nodes. 

This results in the nodes in the hidden layer raking on various (random) 
activation values, which are in turn communicated to the output nodes in 
the same fashion. The output nodes then rake on a pattern of activations 
that represent the network's "best guess" as to what the actual values of 
the dependent variables might be for that case. Since the initial weights 
are simply random numbers, however, these output activations represent 
a random guess. These random activations are then subtracted from the 
"correct" activations as represented by the values of the output character­
istics (or dependent variables) in the input pattern or case. This subtrac­
tion yields an error term for each output node. The essence of a super­
vised neural network is that it uses this error term to reconfigure the 
network-in essence; the actual output values of the cases in the training 
set serve as a "supervisor" or teacher, and the network is "trained" to min­
imize these errors, 

The most common procedure for mOdifying the weights is called back 
propagation. The errors may be expressed as a function of the output ac­
tivations, which in turn can be expressed as a function of the connection 
strengths or weights from the hidden nodes to the output nodes and the 
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activation values of the hidden nodes. These activations of the hidden 
nodes, of course, cari be expressed as a function of the connection 
weights from the input to hidden nodes. By the chain rule, it is possible 
to find a weigbt error derivative for each weight, which represents the 
slope of the weight relative to the error. Each weight is then multiplied by 
its "ppropriate weight error derivative, which modifies the weights so that 
the network will produce the correct output activations for the input val­
ues in that case. The next case is then entered and the process is repeated 
(Rumelhart, Hinton, & Williams, 1988; Werbos, 1974). 

Adjusting the weights to fit the second case generally results in worsen­
ing the fit for the first case, so in practice the process is repeated until all 
'cases have been entere(:l, then the network cycles through all the cases 
repeatedly until the total error summed across all cases either falls below 
a preselected threshold or until no further improvements occur. The re­
sult is a network that can. provide an optimal mapping of input values 
onto output values for these cases. Because of the generalizing ability of 
networks described above, the network is then able to read input values 
for cases not in the training set and make predictions about the values of 
the output characteristics (dependent variables) for those novel cases: 
Other methods for adjusting the connection strengths (jacobs, 1988; 
Rigler, Irvine, & Vogl, 1991; Tolleneare, 1990; van Ooyen & Niehuis, 199.2; 
Vogl, Mangis, Rigler, Zink, & Alkon, 1988) yield equivalent results, often 
with increased speed, but this back propagation algOrithm is by far the 
most commonly used in applied settings. 

Researchers increasingly understand that the ability to learn to predict 
the output values of cases in the training set as accurately as possible (the 
rough equivalent of minimizing a least squares error term in a regression 
model) is not always an optimal criterion for determining when a net­
work has been well trained. Much more important is the ability to predict 
the output values of cases not contained in the original training set. Many 
researchers have noted, in fact, that "overtraining" the network can re­
duce its ability to generalize to new cases; such networks are said to have 
simply memorized the training set. As a result, in practical use, the re­
searcher sometimes holds back a subset of the original dataset to use in 
testing the generalizability of the network to cases other than those in the 
training set. Many recent releases of packaged neural network software 
contain provisions for using the generalizability of the network as a crite­
rion for ending the learning or training phase. 

Whatever procedure is used to adjust the weights, the result is a net­
work whose connection weights are so calculated that the network can 
match a set.of input patterns to a set of output patterns with minin1Um 
error. Since the logistic function, which forms the basic operating charac­
teristics of the network, is nonlinear and nonmonotonic, the system is 
highly nonlinear, and several authors (e.g., Cybenko, 1989; Funahashi, 
1989; Kurkova', 1992) have shown that any function can be approximated 
as a sum of logistics. This provides one of the most significant advantages 
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of the supervised neural network over the regression model: The ne 
. . f . . Ural network can represent relationshIps 0 any degree of curvllmearitv a 

matically; the researcher does not need to specify the functional f~rr:tQf' 
the relationships among the input and output variables in advance. 0 

Supervised ANNs may have any number of input and output nodes 
(variables), may contain feedback loops, and may be cascaded, With OUt . 

. puts from one network serving as inputs to another. ln general, a set of 
cascaded supervised ANNs can model any system that can be modeled in 
the regression framework. Many vendors of supervised ANN software rec. 
ommend them as a replacement for the general linear regression model 
and its more sophisticated relatives. A typical claim is "the end result is a 
marked improvement over conventional methods such as regression anal. 
ysis, clustering, unequal proportion techniques, or other linear analysis" 
(Neuralware, 1992, p.2). Advocates of the supervised ANN model claim 
several significant advantages over the generalized regression model: 

1. There is no need to prespecify the correct functional form that reo 
lates input to output variables; the network automatically finds the opti. 
mal form. 

2. All possible interaction terms are automatically considered. 
3. ANNs work well with noisy and incomplete data. 
4. ANNs are well suited for real-time operation, adjusting their struc­

ture as new cases are added. 
;. ANNs generally fit the same variables to the same data bener than 

best-fitting regression models. 
In spite of the close relationship between self-organizing ANNs and re­

gression, publiShed studies of actual empirical comparisons are scarce. 
Dispenza and Dasgupta (1992) compared the results of a back'propaga­
tion ANN, logistic regression, and linear discriminant analysis in four 
cases. Dispenza and Dasgupta had available data from a I,OOO-case 
mailed survey, which provided information on each respondent's invest­
ment savings, willingness to take financial risks, ownership of investment 
products, and opinions toward financial product providers, along with 
unspecified demographic information. These authors were able to match 
the respondents to the Equifax Marketing Consumer Database I to provide 
third-party demographiCS and characteristics. 

The authors tried to classify (a) respondents from the survey and (b) in­
dividuals from the Consumer Database on two dependent dichotomous 
variables (willingness to take finanCial risks and willingness to purchase a 
specific investment product). Independent variables were taken from ei­
ther the surveyor the data base. Within each cell of the resulting 2 x 2 
design, all three methods-logistic regression, back propagation, and lin­
ear discriminant analysis-were used. 

Table I shows a somewhat oversimplified summary of the overall re-

I This data base is the property of Equifax./Elrick & uvidge, Inc. 
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Table 1: Percentage of Cases Classlfled Correctly by Three Multivariate Models In 
Four Condition. 

RiSk taker! Bought! 
Dependent variable not risk taker did not buy product 

Independent variables Survey Data base . Survey Dota bose 

Logistic regression 94 100 100 96 
Unear discriminant analysis 94 B7 96 89 
Back propagation 100 B2 98 100 

Note: Data from Dispenza and Dasgupfa (1992). 

suits. By and large, the back-propagation model and the logistic regres­
sion model perform about equally well. and both outperform the linear 
discriminant model. Both the logistic regression model and the back­
propagation model are influenced by normalization decisions, and these 
are nat described in the Dispenza and Dasgupta paper, so some caution 
should be used in evaluating these results. Moreover, the simple binary 
classification problem studied by these authors is very simple and very 
well suited to logistic regression; itwould be reasonable to expect the 
back-propagation model to outperform the regression model in mqre dif­
ficult cases, particularly those with continuous multiple dependent vari­
ables and nonlinear and perhaps nonmanotone functional relations. 

Self-Organizing Models 

In supervised networks. the output values for. aq.y. case serve as the "cor­
rect" outputs the network should provide when supplied with the given 
input values for that case. In self-organizing networks, there is no "cor­
rect" pattern of outputs. Instead, the network changes its internal connec­
tion strengths to recognize recurrent patterns of inputs (Carpenter & 
Grossberg, 1987; Kohonen, 1982, 1986; Rumelhart & Zipser, 1987). Al­
though many rypes of self-organizing or unsupervised networks have 
been developed, in general most tend to strengthen connections among 
nodes that are frequently coactive (Hebb, 1949; Kosko, 1989). Over time 
this leads the network to modify its own internal strucrure to become in­
creasingly similar to its environment. 

The set of activation values of the nodes of a network at a given time 
may be considered a "pattern." If a given pattern of activations is present­
ed to the network as input relatively frequently, the nodes that make up 
the pattern will become fairly tight!,' connected. The result will be that, 
due to their interconnections, the activation of a large enough subset of 
the nodes in the pattern will usually cause the remaining nodes to be-. 
come active as well. This means that the total pattern may be stored in the 
network and retrieved later by activating parts orthat pattern. 
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A self-organizing ANN is typically used for information storage and re­
trieval systems. Users may request several documents during a search; if 
this set of documents is a "typical" search pattern. then the network will 
learn this pattern and tend to retrieve :he entire set of documents when 
some subset is requested. 

Self-organizing or unsupervised ANNs have not as yet developed as 
large a base of commercially available technologies as have .their super­
vised counterparts, although several are commercially available. One such 
program is CATPAC (Woelfel, Stoyanoff, & Danielson, 1992), an unsuper­
vised neural network that is deSigned to read and "understand" text. CAT­
PAC reads any ASCII text; discards minor words such as articles, preposi­
tions, and the like from a prewritten exclude file; and discards additional 
words that fall below an arbitrary, user-set frequency of occurrence. For 
each remaining word, an artificial neuron is constructed that represents 
that word. A scanning window of user-set size is then passed through the 
text. Whenever a given word is in the scanning window, the neuron that 
represents that word is activated (its activation value is set to 1.0). 

At the user's option, CATPAC may be set to "cycle" up to four times. 
During each cycle, activa-tions of the nodes are propagated along the con­
nections, and other nodes connected to the active nodes may also be acti­
vated (or deactivated in the case of negative connection weights). Re­
gardless of whether the network has been set to cycle, connection 
weights among the neurons that represent the words are modified ac­
cording to the rule 

where b represents a "learning constant," and a; and aJ represent the acti­
vations of the ith and jth nodes, respectively.. l'his means that the con­
nection strengths among nodes will be strengthened when they are simul­
taneously active to the extent that they are active. In essence, this means 
that nodes tbat bebave Similarly will be increasingly strongly connected. 
This results in a square matrix that resembles a correlation matrix, al­
though due to the cycling, which results in spreading activation, the ma­
trix need nO! in general be sY'Tlmetric. Each value in the matrix represents 
the degree to which the nodes representing their corresponding words 
are "similar." In practice, this means that words that are close to each 
other in the text will be tightly connected; it also means that a word simi­
lar to another word which is similar to a third word will be tightly con­
nected to the third word, and so on. 

This matrix (called a "weight input network" or WIN matrix) may be 
considered a kind of similarities matrix, and can be entered into a variety 
of multivariate analytic procedures to reveal the underlying structure of 
the text. CATPAC routiriely provides two familiar techniques: cluster 
analysis and multidimensional scaling ("perceptual mapping"). The hier­
archical clustering algorithm built into CATPAC produces a "dendogram" 
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or graphic representation of the clusters in the text. Typically, CATPAC is 
used to analyze interview data, focus group discussions, texts, and the 
like. Figure 3 is an examplt'! of a CATPAC analysis of three interviews 
about Buffalo, Detroit, and San Diego. Respondents were asked to de­
scribe each of the cities. While the sample is clearly insufficient for gener­
alizations. the extremely small number of cases provides a good under­
standing of the ability of CATPAC to detect patterns Without much data. 
The text of the three interviews is presented in the Appendix. 

CATPAC produces a "dendogram" (see Figure 3), which arrays the 
words found in the text across the top of the page, and shows how words 
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cluster together by darkening the area under words that cluster togeth 
(Somewhat oversimplified. words that occurred close to each other i er. 
text are close to each other in the dendogram; how close thev are is ~~h, 
cated by the height of the shadowing beneath the words.) Following th.'· 
rule. at the highest level. CATPAC finds the cluster [San. Diegoi. At the IS 

next level. it finds a new cluster [Detroit. Jimi. On the next le"el the clus. 
ter [Buffalo. neighbors] emerges (Buffalo is called "The City of Good 
:-ieighbors"). and. one level down. the cluster [sand. suni begins. Down 
one more level. the word good enters the [Buffalo. friend~v. goodi cluSter' 
then a [palm. trees] cluster arises. and next a [brown. water] cluster . 
emerges after which swi joins the [sand, sun, surf] cluster. These three 
clusters eventually merge with the [San, Diego] cluster to result in the clus. 
ter [San. Diego. brown, water, palm. trees, sand. sun. surf]. The Detroit 
cluster becomes finally [big, DetroitJun. exciting]. while the Buffalo 
cluster ultimately becomes [cityJriendly, good, Buffalo. neigbbors. Nia­
garai. 

Detailed description of the CATPAC dendogram is tedious and can de­
tract from understanding the usefulness of CATPAC. What is significant 
about this technique is the fact that it read the raw text of three interviews 
and within seconds recognized that the respondents related Buffalo to 
good. neighbors. friendly, and Niagara; Detroit to big, city. exciting, and 
fun; and San Diego to sun, sand, surf. palm trees. water, and brown. 
Neural networks' capacity to read vast quantities of unprepared text and 
proVide a brief and-useful synopsis of their main concepts proVides poli­
cy researchers with a useful tool not available with conventional technol­
ogy. 

Hybrid Models' • 

ANNs are often found in mixed environments, which employ other 
technologies in addition to neural models. Most commonly. neural net­
works are combined with serial software for data access and handling. A 
typical combination is neural networks and rule-based expert systems. 
and neural networks and fuzzy-logic modules (although ANNs can be 
made fundamentally fuzzy in their own right). A model familiar to com­
munication researchers. the Galileo model (Woelfel & Fink, 1980), uses 
neural networks in which connection weights are measured directly 
rather than established by the ANN itself. Similarly, combinations of unsu­
pervised ANNs with directly measured communication data are useful in 
analyzing social networks more commonly srudied by conventional soft­
ware such as NEGOPY (Richards, 1989) and UCINET (Burgatti. Everett. & 
Freeman. 1992). CATPAC itself is a hybrid program. using conventional 
parsing and word-counting techniques. along with a conventional cluster­
analysis routine. although the similarity matrix among words in the docu­
ment is computed by a neural network. 
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Figure 4. ·Galileo perceptual map ,howlng similarity relation. among words desc~bo 
Ing Bullalo, OelroH, and San Diego. The slmllarllle. dcla from whIch the map was pro­
duced were genercled by CATPAC Irom the Intervtew texts .hown In the Appendix. 

Figure 4 shows one of the most powerful hybrid uses, using a similari­
ties matrix generated by the neural network in CATPAC and the perceptu­
al mapping algorithm from GALILEO.' (For those unfamiliar With percep­
tual mapping, Figure 4 is arrayed such that concepts that are similar in 
meaning or that "go together" are located near each other.) Based on this· 
rule, the lower right shows clearly the Buffalo cluster: Buffalo,friendly, 
city, good, neIghbors, and Niagara. Similarly, at the center of the figure 
lies the Detroit cluster: Detrott, big, exciting, fun. At the left of the figure 

J While research on what we now call neural networks has a history that goes back well over 
100 years, the conventional term ~neural nerworks~ emerged only in the late 19805 to de­
scribe this area of research. Many technologies and technique5 now called neural networks 
were once called something else. In the most general sense, any abstract entity that could 
be described by a rectangular array of numbers could be considered a set of interconnect­
ed nodes and hence a neural network. A hybrid technology like CATPAC-GAllLEO capital­
izes on the fact that the square matrix of connection weights (i.e., the weight input rruttrix) 
produced by CATPAC's self-organizing neural algOrithm is mathematically indistingUishable 
from the square matrix of real numbers in the ceneroid scalar products matrix OUt -of which 
Galileo perceptual maps are made. The condition of a neural network at any given mo­
ment can thus be displayed as a perceptual map using the GALILEO algorithm. 
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can be found the San Diego cluster: San, Diego, sun, sand, surf, pal", 
trees, brown, water. ' 

Figure 4 is instructive in two ways. First. it gives a clear indication of 
how neural programs ·may be combined with conventional algorithms t 
produce useful results in a form already familiar to analysts and clients'" 
Second, it shows clearly the kind of power available from-the new neUr I 
algorithms; even a short while ago few analysts would have considered'. 
likely that a precise perceptual map could be formed from the few lines it 
of text in the Appendix. 

Value of the Model 

. Artificial neural networks show great promise for policy researchers in 
both the public and private sectors. One way in which neural technOlogy 
can serve the policy researcher is in proViding replacements for technOlo­
gies already in use,. such as regression modeling. While regression model. 
ing is unlikely to be replaced entirely by supervised neural networks, 
many policy circumstances favor the neural model over the regression 
model. Policy researchers might consider supervised neural networks·in· 
stead of regression models when one or more of the follOWing circum· 
stances apply: Ca) The problem to be addressed is not well understood 
theoretically; Cb) the variables to be included in the model are poorly or 
incompletely measured, or are noisy; Cc) quick solutions are needed, 
which preclude careful design and execution of well-planned srudies, so 
policymakers must instead be guided by data at hand; Cd) highly skilled 
multivariate analysts are unavailable for designing complicated causal 
models; or Ce) advice and guidance are needed in real time on a continuo 
ous basis. . .• 

There are tasks that cannot, in principle, be done by either ANNs or reo 
gression-based models. But, circumstances such as those listed above 
point to tasks that ANNs can do well, when real-world conditions rule out 
well-constructed regression-based models; these circumstances face the 
policymaker every .day. 

Beyond supervised ANNs, self·organizing neural networks provide 
even more interesting possibilities for the policy researcher. Even at their 
present early stage of development, they provide capabilities that do not 
exist in the most highly developed conventional multivariate analytic pro­
cedures. The ability of self-organizing ANNs like CATPAC to read and "un· 
derstand" text is particularly valuable. Policy researchers in particular 
must make do with data that are primarily and overwhelmingly textUal. 
Perhaps most interesting of all, their similarity to human reasoning pro­
vides analyses that are more like the inruitive, "gut" pattern recognition 
long favored by many in advertising, marketing, and political campaign· 
ing. 
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The ability of ANNs to be used in combination with conventional meth­
·ods in hybrid models allows users a familiar format for data entry and 
presentation of results. And the abiliry of ANNs to grasp patterns from in­
complete, noisy data opens up possibilities for rigorous analysis previ­
ously unavailable with conventional techniques. Equally important. the 
ability of self-organizing models to deal easily with textual data provides 
precise, quantitative analysis for the most widely· available source of poli­
cy-related data, Most policy researchers and clients are faced with vague­
ly defined questions that can best be approached by open-ended ques­
tions, and even when structured scales are used, these are often 
supplemented by open-ended questions. Lieman (1992) has investigated· 
the effects of alternative parameter choices for CATPAC on data of this 
type, and shows useful results. 

A rypical and important policy-related use of CATPAC is investigation of 
the public acceptabiliry of electric-powered vehicles (Wassman, 1992). 
The decision to produce and distribute electric-powered.vehicles on a 
large scale is a policy decision of major consequence to the nation and to 
automobile manufacturers. An important aspect of the decision must be 
based on the receptiveness of potential consumers. Wassman analyzed 
verbatim responses of visitors to auto shows in which electric-vehicle ex­
hibits were displayed to determine the clusters of attributes potential buy­
ers used to define electric vehicles and determine their acceptabiliry. Au­
tomobile executives use these data to determine whether the attributes 
required by consumers to make vehicles saleable are within the range of 
technical feasibiliry. 

An early example of neural technology, mairurame versions of CATPAC, 
are already large enough and fast enough to scan large electrOniC data 
bases automatically and continually. ANNs promise Widespread deploy­
ment of automated text-analysIs programs to scan the huge, worldWide 
electronic data base and provide information related to important policy 
decisions. 

By far the most distinctive feature of all ANNs, whether supervised or 
self-organizing, is their learning capabiliry. All ANNs continuously recon­
figure themselves as they run, either to conform to a preset pattern, as in 
supervised ANNs, or to become increasingly "similar" to the input infor­
mation passing through the nerwork, as in self-organizing models. Due to 
ANNs' generalizing abiliry, information learned about one or more pat­
terns of information applies immediately to other related patterns. As a . 
result, ANNs are particularly well suited to on-line operation, taking in 
additional cases or information, even in real time, adjusting to the new in­
formation, and outputting information continually. Insofar as policy re­
search entails defining and adjusting plans to guide governments, organi­
zations, or other entities thrqugh a continuously changing environment, 
neural technology is particularly well suited to the needs of policy re­
searchers. 
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At the same time. no computational procedure is immune to hu .. 
blunders. and it is quite possible to produce misleading or errone Illan 
suits with the new technology. Particularly because of ANNs' abili~s r,. 
successfully use noisy and incomplete data sets, analysts can be lllisl~Q 
into overanalyzing poor·quality or useless data. A back-propagation nd 

work. for example. cannot develop a useful model to predict the val "t. 

of a given set of variables if the variables that control those values h~e, 
not been included in the model. just as a regression model cannot ac ' 
rately explain the values of a set of dependent variables if the right in~' 
pendent variables have not been measured. Similarly, every text may n" 
contain sufficient information to produce a useful cluster analYSis Or r:. 
ceptual map. regardless of the sophistication of the analytic tools. 

These cautions notwithstanding, currently available artifiCial neural nO!!. 
works constitute a useful and powerful technology for the policy re­
searcher. 

Appendix 

Interview Transcripts (each paragraph indicates one response): 
Detroit is exciting! You can feel the excitement of it. It's big, and brawl. 

ing a 
You have to watch your hat and coat, but it's worth it. You can have a 

good time in 
Detroit. There's lots of things to do in Detroit. Detroit is a fun city. Lots of 
driving. 

Buffalo is a friendly ciry. They call it the city of good neighbors, and 
that's true. Buffalo is the friendliest city. Buffalo is a working town, but 
the people a party there. . .• 

San Diego is warm, even too hot sometimes. It's brown, and water is 
scarce. There 
a Water shortage. Usually a drought. San Diego is brown. Shortage of 
water is a 
problem. There's palm trees, and ocean and beach. If you like beaches, 
San Diego 
is the place for you. Warm, sand, sun, surf. Beautiful city. 

Detroit is scary. It's big and eXCiting, but it's scary. There's the Tigers, 
and a great city. 

Buffalo is on the Niagara river; it's near Niagara Falls. The University of 
Buffalo is there, in Amherst. It's Windy. Very windy. The people are 
friendly. 

San Diego! Palm trees! Beaches! Sand! Sun! Surf! Yippee! 
Detroit is excellent. Very exciting. A lot of fun. Somewhat dangerous, 

but worth it. Fun. A big city, very big. Action. 
Buffalo is the friendly city. Buffalo is the city of good neighbors. Buffa-
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10 and Niagara Falls are neighbors. A party community. Laid back. A good 
time. 

San Diego is sun. sand, surf, and sex. Palm trees. Brown, drought. ex­
pensive. 
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